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The scale-free �SF� networks that have been studied so far contained quenched disorder generated by
random dilution which does not vary with the time. In practice, if a SF network is to represent, for example,
the worldwide web, then the links between its various nodes may temporarily be lost and reestablished again
later on. This gives rise to SF networks with annealed disorder. Even if the disorder is quenched, it may be
more realistic to generate it by a dynamical process that is happening in the network. In this paper, we study
diffusion in SF networks with annealed disorder generated by various scenarios, as well as in SF networks with
quenched disorder which, however, is generated by the diffusion process itself. Several quantities of the
diffusion process are computed, including the mean number of distinct sites visited, the mean number of
returns to the origin, and the mean number of connected nodes that are accessible to the random walkers at any
given time. The results, including �1� greatly reduced growth with the time of the mean number of distinct sites
visited, �2� blocking of the random walkers, �3� the existence of a phase diagram that separates the region in
which diffusion is possible from one in which diffusion is impossible, and �4� a transition in the structure of the
networks at which the mean number of distinct sites visited vanishes, indicate completely different behavior for
the computed quantities than those in SF networks with quenched disorder generated by simple random
dilution.
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I. INTRODUCTION

Scale-free �SF� networks have recently attracted much in-
terest �1,2�. In such networks the probability distribution f�k�
for a node to have k links to other nodes follows a power
law,

f�k� � k−�, �1�

where � is a parameter that measures how well-connected
the networks are. Many unusual properties of SF networks
have been attributed to the distribution �1�. For example, if
2���3, then such networks preserve their connected struc-
ture even if their nodes are randomly removed and their
structure is greatly diluted, indicating their resilience to ran-
dom failure, while they exhibit vulnerability to correlated
dilution whereby only the most connected nodes are re-
moved �3–7�. In addition, Gallos and Argyrakis �8� showed
that certain chemical reactions in SF networks exhibit behav-
ior drastically different from the same reactions in regular
lattices. Many properties of SF networks have been com-
puted, including their metric �9� and percolation properties
�10�. Moreover, such phenomena as epidemic spreading �11�,
with the intended applications being the spread of computer
virus and pollution control, and the spread of extreme opin-
ions advocated by fanatics in a society have also been stud-
ied �12� in SF networks. Most of the previous studies of SF
networks employed computer simulations in order to com-
pute various properties of interest. Hughes, Reed, and co-
workers �13� developed a class of networks whose properties

can be computed either exactly or by accurate mean-field
approximations.

Transport processes occurring on SF networks are also of
interest. For example, if SF networks are supposed to model
the internet, then diffusion of particles on such networks may
represent a person trying to locate information by visiting a
website and its direct and indirect links, or the random
spreading of a virus throughout the internet. Alternatively,
such a process might also be relevant to the spread of a
disease in biological networks. Diffusion �and reaction� pro-
cesses have already been studied in many different systems
�14–16�, but studies of the properties of such processes in SF
networks have started only recently �17–20�. A recent sum-
mary is given by Bollt and ben-Avraham �21�.

All the studies mentioned above considered SF networks
with quenched disorder. That is, once the disorder is gener-
ated in the networks, either through the power-law distribu-
tion of the connectivities, Eq. �1�, or by random dilution, it
remains fixed. In practice, annealed disorder—one that
changes with the time—may be more relevant. As an ex-
ample, consider the worldwide web �WWW�. At any given
time, the links between a number of sites may temporarily be
lost due to, for example, some of the sites being blocked,
shut down, or hacked. The links may also be lost over a
period of time because, for example, certain sites are visited
so often that it becomes very difficult for a new person to
visit them. Such disconnections can, at any given time, hap-
pen between a number of sites, hence giving rise to annealed
disorder whereby the existence of links between various
nodes may change with the time.

Even if the disorder is quenched, for application to the
WWW it may be more reasonable if it is generated by a
dynamical process which is happening in the network. For
example, if a virus is spreading throughout the WWW, the
sites that are visited by the virus and have become disabled
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must be removed �either temporarily or permanently� from
the network. Therefore, if, for example, diffusion of particles
on SF networks can represent the spread of a virus in the
WWW, then studying diffusion in SF networks with an-
nealed disorder, or quenched disorder which is generated by
the random walk itself, may be more relevant to the problem.

The purpose of the present paper is to carry out a study of
random walk processes in SF networks in which the disorder
is either annealed or, if it is quenched, it is generated by the
random walk process itself. We present the results of exten-
sive Monte Carlo simulations of diffusion in such SF net-
works which, to our knowledge, has never been studied be-
fore. We consider several scenarios for generating the
disorder and compute a number of important properties of
diffusion in SF networks. Diffusion in regular lattices with
annealed disorder was studied a long time ago �22�.

The plan of this paper is as follows. In the next section we
describe models of annealed disorder that we consider. Sec-
tion III describes the Monte Carlo simulation procedure and
the quantities that we compute. The results are presented and
discussed in Sec. IV.

II. MODELS OF DISORDER

Before introducing any disorder into a SF network, we
grow the network with N sites such that every new site se-
lects four of the already existing sites as neighbors, with a
probability proportional to the number of neighbors the se-
lected site had before. We start with four sites connected to
each other. Such a method for generating a SF network has
been used in numerous papers �1�. In such a network, the
probability for a site to have k�4 neighbors decays as 1/k3

�i.e., �=3�. We do not attempt to vary � as a parameter of the
model. We now consider several scenarios under which the
topology of the grown network may change with the time.
These are as follows.

A. Model A

In the first model we let the SF network change under the
influence of the walkers, say a virus that is penetrating the
WWW. At each time step, every site which is not yet visited
is deleted permanently from the network with probability p.
The idea is that if, for example, a virus is spreading through-
out the WWW, at every time step, a certain fraction of the
uninfected sites becomes aware of the existence of the virus
and take themselves out of the WWW for a certain time.
Alternatively, we also study the case in which the already
visited sites �representing the infected sites� are deleted in
order to compare the results with the first scenario.

B. Model B

In this model, only after visiting a site �of the previously
constructed network� is attempted m times, the site becomes
available permanently to the walkers. The idea is that, as it
often happens in practice, a site cannot be accessed by a
visitor because, for example, it has been shut down for a
certain period of time, or it is already being visited so
heavily that it becomes much more difficult for additional

visitors to access the site, or that one has forgotten the pre-
cise address of a site and, therefore, many attempts are made
in order to find the correct address of the site to access it.

C. Model C

In this model we combine the two effects of forgetting a
site and having to try repeatedly, in order to generate an-
nealed disorder. Thus one process removes sites permanently
from the network, while the other makes some remaining
sites permanently accessible.

D. Model D

In this model a random walker still needs, as in model C,
m attempts to visit a new site, but if a site is visited, then a
repeat visit is possible only if the total number of attempts is
at least m+ P�min�m ,�t�, where �t �measured in units of
the number of steps taken� is the time elapsed after the last
successful visit, and P�1 a new “forgetfulness” parameter.
If P and m are large, then at first there is a barrier m and we
need to overcome this barrier of m attempts before the site is
visited. In the immediately following steps it easy to revisit
this site �small barrier�, but, if this visit is not made, then
with increasing time it gets more and more difficult to revisit
the site, and the barrier can grow again to its initial value m.
Thus, a site which is visited, but then not visited again for
some time �which can be long�, is treated as if it was never
visited before which, from a practical view point regarding
the WWW, seems reasonable. Hence, this type of annealed
disorder involves a feedback mechanism between consecu-
tive visits to the sites of a SF network or the WWW.

E. Model E

This model is motivated by the fact that, if the best con-
nected sites of a SF network are removed, most of the net-
work’s connectivity is lost �3–7�. Thus, we first remove a
certain fraction of the better connected sites of the network,
and then use model D in order to generate annealed disorder
and carry out simulation of the diffusion process. Therefore,
model E contains both quenched and annealed disorder.

III. MONTE CARLO SIMULATION

A property of random walk processes, which from a prac-
tical point of view is most relevant to SF networks and their
possible applications to WWW, is the mean number of dis-
tinct sites visited after time t, S�t�, which characterizes the
coverage of the space by the random walkers. The SF net-
works that we utilize are not embedded in Euclidean space.
In addition, it has been shown �see Ref. �9�� that the diameter
of SF networks that we simulate �with �=3�, which repre-
sents the minimal number of links needed to connect two
network sites, is only of the order of ln N, so that, for ex-
ample, the WWW with about 8�108 nodes has a very small
diameter �23�. Therefore, the mean-square displacement of
the random walkers is not a very useful property, because it
does not measure any true distance that the random walkers
travel in the space.
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For some of the models we also compute the number R�t�
of returns to the origin of the random walks. The traditional
probability P0�t� that the random walkers return to the origin
of their walks is simply �dR�t� /dt. Also computed is the
number A�t� of the sites that are accessible to the random
walkers at time t. The latter quantity is particularly important
to the application involving WWW and the spread of a virus
in computer networks. Most of our results were obtained
using 102 or 103 realizations of the SF networks with up to
N=105 sites each.

IV. RESULTS AND DISCUSSIONS

In the first series of simulations, we put one random
walker onto one of the four initial sites of the SF network,
and at each time step t the walker selects with probability
1 /2 not to move. If instead it moves, it selects randomly one
of its k neighbors and moves there. Each connection between
two neighboring sites can be travelled in both directions. If,
instead, we take directed or hierarchical SF networks with
one-way links �so that a hop from one site to another is
allowed only in a fixed direction�, the walkers would soon be
trapped. We average for each realization the results over the
four starting points, and then over all network realizations.

Figure 1 �top� indicates that the mean number of distinct
sites visited is given by

S�t� � t , �2�

for intermediate times �see also Ref. �18��. Equation �2� is
not valid for short times. For long times finite-size effects

dominate and one obtains S=N, i.e., every site of the net-
work will eventually be visited. The fraction S�t� /N of the
visited sites is a size-independent function of t /N for not too
short times. This is shown in Fig. 1 �bottom� which indicates
that

S�t�/N = f�t/N� . �3�

Scaling law �3� is analogous to opinion dynamics �24�,
where the number S�t� of surviving opinions equals the num-
ber N of possible opinions, multiplied by a scaling function
f�t /N�, where t represents the number of people. The linear
dependence of S�t� on t is similar to what one obtains for
random walks on the Bethe lattices or Cayley trees, branch-
ing structures in which every node is connected to a fixed
number k of other nodes with no closed loops allowed. It was
shown by Hughes and Sahimi that for such trees �25�

S�t� �
k − 2

k − 1
t . �4�

Hughes, Sahimi, and Davis �25� showed that even if small
closed loops are allowed to form in the tree structure, the
essence of Eq. �4�, namely, the linear dependence of S�t� on
t, would remain unaltered.

Figure 2 shows the results for S�t�, computed for model
A, for several values of the blocking probability p. For better
efficiency in the simulations we delete only sites which are
just visited by the ant, with probability pt instead of
1− �1− p�t. Thus, at time t=1/ p the annealed disorder no
longer has any effect and the network is quenched. The re-
sults indicate that the annealed disorder generated by block-
ing has an effect similar to a priori restriction of the network
size shown in Fig. 1. It does not matter much whether all
sites, or only previously unvisited sites, can be removed.

Figure 3 presents the results for S�t�, computed for model
B, using several values of the parameters m, the number of
attempts to visit a site before that site becomes available. The
results indicate the strong delay in the number of distinct
sites visited, especially for large values of m. In particular,

FIG. 1. Top: Time dependence of the number of distinct sites
visited, averaged over 103 samples of four walkers each. The static
network has, from top to bottom, N=105, 104, 103, and 102 sites.
Bottom: Scaling representation of the results in the top figure, with
N increasing from right to left.

FIG. 2. Number of distinct sites visited in model A as a function
of time t, averaged over 100 samples of four walkers each. The
network contains disorder with a fraction pt of the sites not avail-
able at time t with, from top to bottom, p=10−6, 10−5, 10−4, 10−3,
10−2, and 10−1. Only the unvisited sites can be deleted but the
results are qualitatively the same if all sites can be deleted.
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for short and intermediate times S�t� varies with t nonlinearly
and in a nontrivial manner. Eventually, however, the linear
growth of S�t� with t seems to set in.

The results for S�t� for model C, in which we combine the
disorder in models A and B, are shown in Fig. 4 �top�. Even
for an extremely small and fixed value, p=10−5, diffusion
becomes increasingly difficult as m increases. Strong delays
in the growth of S�t� are seen even for m as small as 5. For

m=50, the largest value that we considered, there is a long
delay in the growth of S�t� with t, followed by a nonlinear
growth. At long times, S�t� more or less saturates at values
much smaller than N, the total number of sites in the net-
work. Similarly, for a fixed m as small as 2, diffusion be-
comes impossible for p as small 0.1. Even for p=10−2 the
walker visits very few sites before its motion becomes inca-
pable of taking it to new sites. These results are also shown
in Fig. 4 �bottom�.

Figure 5 presents a phase diagram for model D, indicating
that for a certain region in the �m , P� space, diffusion be-
comes impossible and the walkers become blocked. The
curve that separates the diffusion/no diffusion regions is
given roughly by m=1/ P, so that for m�1/ P no diffusion is
possible and the random walkers remain at their starting
place. For m	1/ P the results agree with those for P=0,
when the model becomes equivalent to model B. As we
learned from a referee, this latter result is explained by the
fact that then P�min�m ,�t� is rounded down to zero, i.e.,
this term has no effect anymore.

Figure 6, showing the average number R�t� of visits to the
origin, indicates that in model D the random walkers return
to their starting points very rarely. Even at relatively long
times, very few visits to the origin take place and, in fact,

FIG. 3. Number of distinct sites visited in model B. The results
are for, from left to right, m=1 �same as in Fig. 1�, 2, 3, 5, 10, 20,
and 50, all computed for networks of size N=105 and averaged over
103 samples.

FIG. 4. Top: Number of distinct sites visited, averaged over 100
samples, in model C with p=10−5 and, from left to right, m=1, 2, 3,
4, 5, 10, and 20. �The results for m=50 are too small to be seen;
here we do not count the starting point as being visited at time
zero.� Bottom: Results for, from bottom to top, p=10−3, 10−4, 10−5,
and 10−6 and m=2. For p�0.1 no diffusion was possible, while
S�t�	1 for p=0.01.

FIG. 5. Phase diagram for model D. For pairs �m , P� that are
above the curve diffusion is impossible. The results are averages
over 10 or 100 realizations of N=104. The curve shown is
m=1/ P.

FIG. 6. Total number of visits to the origin, up to the time t, in
model D. The results are averages over 100 realizations for
P=0.1 and m=5 �flatter curve� and 10 �steeper curve�.
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with increasing m the visits become more rare, since more
sites are unavailable at any given time. The traditional prob-
ability P0�t� of return to the origin that has been calculated
for many random walks is simply the derivative with respect
to t of the curves shown in Fig. 6, which would indicate a
sharp decay of P0�t� with t �not shown�.

An important quantity is the number of nodes that are
accessible to a random walker during its motion. For ex-
ample, if a virus is moving through the WWW, the number
of nodes that it can potentially reach in order to infect them
determines the “success” of the virus. We have computed
this quantity for model D; the results are shown in Fig. 7,
where we show the dependence of the number of accessible
sites on the time t for several network sizes, with P=0.1 and
m=5. Qualitatively, the results are similar to the number of
distinct sites visited, although numerically they are quite dif-
ferent. For intermediate times, the number of accessible sites
follows a scaling law similar to Fig. 1 for the number of
visited sites.

Finally, for model E, we remove permanently a fraction q
of the N network sites and study, using model D, how many
sites can still be visited for t→
. If the deletion is random,
q must be close to unity to split the network into small parts
�3�; if the qN most connected sites are removed, then a small
q is sufficient to split the network �5�. We consider none of
such extreme limits, but instead remove the first qN sites
which joined the network during its creation. They are usu-
ally the most connected ones, but exceptions do exist. More-
over, the initial core of four site belongs to the qN deleted
sites. Thus, the random walkers start their diffusion on such
sites but can never return there. Figure 8 suggests a phase
transition at intermediate values of q, from a large connected
remaining network at small q, to a fragmented assembly of
much smaller clusters at large q, as in percolation on square
lattices. Similar results, but with much less precise statistics,
were obtained for the number of accessible sites �not shown�.

Figure 9 shows a simple test that randomly diluted BA
networks are still scale-free, even though �for 90% dilution�
most nodes are completely isolated.

Let us emphasize that none of the results presented in this
paper are obtained when one considers random walks in SF

networks with quenched disorder generated by simple ran-
dom dilution �as opposed to being generated by the dynami-
cal process itself�. We believe that the results presented in the
present paper indicate not only the significance of the disor-
der of the type we consider, but also their potential applica-
bility to networks encountered in practice, and in particular
the WWW which contains either annealed disorder or
quenched disorder, which is, however, generated by a dy-
namical process.

V. SUMMARY

We carried out extensive Monte Carlo simulation of dif-
fusion in scale-free networks with either annealed �26� dis-
order or quenched disorder, which, however, is generated by
the diffusion process itself. Several models of disorder, mo-
tivated by application to the worldwide web, were consid-
ered and important properties of the diffusion process, such
as the number of distinct sites visited and the fraction of
accessible sites to the walkers at any given time, were com-
puted. The results indicate their drastic departure from those

FIG. 7. Number of sites that are accessible to the random walk-
ers at time t in model D for, from right to left, network sizes N
=102, 103, 104, and 105 �one realization with four walkers�, for P
=0.1 and m=5. We only present the results in their scaled form as in
Fig. 1 bottom.

FIG. 8. Final fraction of visited sites, when a fraction q of the N
network sites is removed; the removed qN sites are the first who
joined the network; m=1, t�107, P=0.1. The network size is N
=102�+� ,103��� ,104 �curve�. The results for m=5 do not differ
much.

FIG. 9. Histogram of the number f�k� of sites with k neighbors
each in randomly diluted Barabási-Albert networks of 185 000
nodes with an occupation fraction �from top to bottom� of 1 �undi-
luted�, 0.9, 0.5, and 0.1.
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in SF networks with quenched disorder generated by simple
random dilution. For some of the models we considered,
scaling laws for the effects of finite times and finite sizes
were demonstrated. For the more complex models of disor-
der, where the structure of the available network is deter-
mined by the diffusion process itself, diffusion may become
impossible in some parameter range, hence providing poten-

tial strategies to handle certain phenomena in SF networks
and the WWW, such as the spread of a virus in such net-
works.
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